Application of a New Clustering Method in Analyzing Homicide Patterns in Chicago

Fahui Wang
Department of Geography
Northern Illinois University

fwang@niu.edu

MAPS 2007 Pittsburgh

Acknowledgement

- ☐ Financial support from the U.S.

 Department of Housing and Urban

 Development (HUD) through Grant

 G2A62172
- Collaboration with Dr. Lan Mu at Department of Geography, University of Illinois at Urbana-Champaign

Dual objectives

- to implement a modified scale-space clustering method (MSSC) in GIS that accounts for both attribute homogeneity and spatial contiguity
- to demonstrate its values in a case study: homicide patterns in Chicago

Implications in spatial analysis

- (1) to construct geographic areas with sufficiently large base population to mitigate the small population problem
- (2) to mitigate the *modifiable areal unit* problem (MAUP)
- (3) to risk less model-building error in using OLS regression as the clustered zones exhibit less spatial autocorrelation

Literature: Existing Approaches

Approach	Examples
Use homicide counts instead of per capita rates	Morenoff & Sampson (1997)
Delete samples of small population	Harrell & Gouvis (1994); Morenoff & Sampson (1997)
Aggregate over more years or to a high geographic level	Messner et al. (1999); Land et al. (1990)
Poisson-based regressions	Osgood (2000); Osgood & Chambers (2000)
Construct geographic areas with large enough populations	Haining et al. (1994); Black et al. (1996); Sampson et al (1997)

Major challenge

Accounting for both spatial and nonspatial factors: maintaining spatial compactness while preserving within-area attribute homogeneity

Scale-Space Theory

 In image analysis: small pixels are melt into large cells at a smaller scale

- Establishing a link between an object and its most similar adjacent object
 - minimum-distance criterion:

$$D_{ik} = \min_{i \in J} \sum_{t} (x_{it} - x_{jt})^{2}$$

- Determining the link's direction
 - using an aggregate attribute score Q
 - \blacksquare i \rightarrow k if $Q_i < Q_k$

- Identifying local minima and maxima
 - local min: all directional links pointing towards other objects
 - local max: all directional links pointing towards it

- Grouping around local maxima
 - Beginning with a local minimum, search outwards following link directions until a local maximum is reached

Implementing in VB in ArcGIS

Topology in clustering

- local minlocal max
- × orphan (no link)
 - → link direction

Clustering process: a sample area

Case Study: Homicides in Chicago

- □ Data:
 - ICPSR by Block and Block, 1998: Homicides in Chicago 1965-1995.
 - 1990 Census data for defining covariates: socioeconomic factors and job access
- Basic unit: census tracts

Variables

- ☐ Homicide rate per 100,000
- Independent variables:
 - factor 1: concentrated disadvantage
 - factor 2: concentrated Latino immigration
 - factor 3: residential instability
 - Job access (JA): convenience of obtaining jobs

Factor analysis on covariates

	Factor1	Factor2	Factor3	
Pubasst	0.93120	0.17595	0.01289	
Femhead	0.89166	0.15172	-0.16524	
Black	0.87403	-0.23226	0.15131	
Poverty	0.84072	0.30861	-0.24573	
Unempl	0.77234	0.18643	0.06327	
Nonhighs	0.40379	0.81162	0.11539	
Crowded	0.25111	0.83486	-0.12716	
Latino	-0.51488	0.78821	-0.19036	
Resid5	0.21224	0.02194	0.91275	
Huowner	-0.45399	-0.20098	0.77222	

Measure of job accessibility

□ A higher Ai value corresponds to better job access:

$$A_i = \sum_{j=1}^n rac{J_j d_{ij}^{-eta}}{V_j}, \quad ext{where} \quad V_j = \sum_{k=1}^m W_k d_{kj}^{-eta}$$

d_{ij}: travel time between resident worker location *i* and job location *j*

J_i: Number of jobs at j

Wi: Number of resident workers at i

1st Round of Grouping

2nd Round of Grouping

Converging Effect of the MSSC Method

Level of convergence (LC)

measuring closeness of objects in terms of attributive and spatial proximity

$$LC_{ij} = 1 - \frac{r_{ij}}{R}$$

r_{ij}: clustering round when *i* and *j* are first melt into one cluster
 R: total number of clustering rounds

LC values between one tract and others

Implication of LC

- Are differences between objects, at the scale, are minor or major?
- Is within-district socio-demographic homogeneity is achieved at the cost of spatial compactness?
- LC is a quantitative assessment tool in evaluating legitimacy in boundary changes

Spatial lag regression models

Indep't Variables	Census tracts (n=845)	1 st -round clusters (n=351)	2 nd -round clusters (n=154)	3 rd -round clusters (n=72)
Intercept	4.5338	4.6685	5.9434	6.9563
	(7.52) ***	(5.66) ***	(5.53) ***	(4.28) ***
Factor1	0.9654	0.9994	0.9578	0.8432
	(10.91) ***	(8.98) ***	(6.92)***	(4.62) ***
Factor2	0.4048	0.5259	0.6408	0.7021
	(6.01) ***	(6.11) ***	(6.07) ***	(4.36) ***
Factor3	-0.0993	-0.1861	-0.1291	-0.1950
	(-1.53)	(-2.17)*	(-1.23)	(-1.19)
Job Access	-2.2056	-2.3250	-3.3508	-4.0053
	(-4.13) ***	(-3.18) **	(-3.54) ***	(-2.82) **
Spatial lag	0.2750	0.2634	0.2304	0.1093
	(5.90) ***	(4.16) ***	(2.71) **	(0.89)
Sq. corr.	0.424	0.533	0.667	0.640

Observations from regressions

- Consistent across analysis units
 - Poorer JA → higher homicide rates
 - Factors 1 and 2 are significant and have the expected sign (+)
 - Factor 3 is mostly not significant
- Significance level of spatial lag declines from census tracts to higher rounds of clusters
 - Less spatial autocorrelation in clusters

Implications in spatial analysis

- Homicide rates in new geographic areas have large base population, and are more reliable
- MSSC minimizes loss of information in clustering, and mitigates the MAUP
- By merging areas of similar attributes, need to control for spatial autocorrelation is less pressing

References:

F Wang. 2005. Job Access and Homicide Patterns in Chicago: An Analysis at Multiple Geographic Levels Based on Scale-Space Theory, *Journal of Quantitative Criminology* 21: 195-217.

L Mu & F Wang. A Scale-Space Clustering Method: Mitigating the Effect of Scale in the Analysis of Zone-Based Data. Forthcoming in *Annals of AAG*.

Program available in the CD in:

Wang, F. 2006. *Quantitative Methods*and Applications in GIS. Boca Raton,
FL: CRC Press

Questions?